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Summary:
This paper presents an outline of different approaches within evolutionary game theory and sees
these approaches in relation to the problem of choosing among multiple equilibria in normal form
gares. More specifically the paper extends the analysis of Mailath, Kandori and Rob (1993)
addressing 2x2 player symmetric gares to cover 2x2 player asymmetric garnes. Utilising an
evolutionary model with a finite and equal number of players within two different player
populations and allowing for mutations perpetuating the system way from its deterministic
evolution, we show that for the asymmetric "batte of the sexes" game the long run equilibrium (for
large populations) chosen satisfies the Harsany and Selten (1988) criterion for risk dominance. In
garnes with player-specific risk, that is in garnes where the players face identical risks regardless of
the strategy chosen, but where the players from the different population face different risks, the
population size N does not influence the equilibrium chosen. In such garnes the long run
equilibrium is the equilibrium with the largest surplus product.
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Introductioni

Within traditional game theory "the battle of the sexes" (BoS from now on) is the name of
a game originating from Luce and Raiffa (1957). The gare models a situation in which
players wish to coordinate their behaviour, but have conflcting interests over outcome. A
simple two person, two strategy version of the game is captured by the following normal
form representation.

2I Il
1

I

Il
2,1

0,0
0,0
1,2

Given that player 1 chooses strategy I the best player 2 can do is also to play strategy I and
vice versa. The same is true for strategy Il. The strategy combinations (1,1) and (11,11) turn

out to be (strict) Nash equilibria for this strategic game2.

To find the equilibrium and to describe its characteristics in different settings, is in the
centre of economic analysis. Within gare theory, when modelling situations of strategic
behaviour, the concept of Nash equilbrium is seen as the one giving most insight (van
Damme; 1993).

There are growing awareness however, that the relevance of equilibrium analysis is not a
straightforward one. The rationality assumption underlying traditional gare theoretic
equilibrium concepts are under attach for being too unrealistic and restrictive. Questions
like "why is the use of Nash equilibrium appropriate" and "when wil such an equilbrium
analysis be suitable" are being raised and not easily answered. Traditional non-

cooperative game theory has also little to offer in situations where multiple equilbria
exist. In the exarple above, given the opportunity to choose, player 1 would prefer

equilibrium (1,1) to manifest itself, and player 2 equilibrium (11,11). But with regard to the
possibility of choosing among multiple equilibria, and eventually which one to choose,
traditional game theory is silen t. As an example of a BoS gare, consider the formation of
households by men and women. In formng households wife and husband have a desire to
co-operate, but the output obtained by the two pars may differ according to the type of
household (eg. patriarchal, egalitarian) established3.

Ev01utionar game theory is a theoretical perspective inquiring whether players wil
coordinate their behaviour, if they wil play Nash and if so, which Nash equilibrium wil

1 The paper has benefited from the comments of Michihiro Kandori, Jørgen Weibull, Ugurhan Berkok and
Sjur Flåm.
2 For a definition of a N ash equilibrium see. e.g. Osbome and Rubinstein (1994), p. 14.
3 See e.g. Sen (1984) for a discussion of unequal distribution of goods within households.
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be the outcome. This being the case, wil evolutionar game theory be able to predict
which Nash equilibrium, if any, a society of agents playing the BoS game wil end up in?
The paper proceeds as follows. First an outline of the different approaches within
evolutionar game theory is given4. Thereafter the insight gained by these different
approaches wil be related to the BoS gare presented. The aim is to investigate how and
to what degree the different evolutionar game theoretic approaches are ab1e to answer

the questions raised.

Evolutionary game theory, an outline.

Evolutionar game theory is originating, as the nare evolutionar implies, from biology

(Maynard Smith and Price; 1973). In its original formulation, the players have no
conscious choice with regard to which strategy to play, but are programrned to play
certain strategies. These strategies may be modes of behaviour inherited from their
forbearers or assigned to them by mutation. Output is defined as reproductive capacity or
fitness.

The sta tie approaeh.

The original formulation of the theory is a static approach which tries to capture a stable
outcome of an evolutionar process. Members of a single population N are randomly
drawn to interact with each other pairwise. In each match each player uses an action
drawn from the set of available actions X. An output or fitness function u measures each
players ability to survive, usually assessed as its number of surviving offsprings. if the
player uses action x when he faces the distribution d of actions of its potential opponents,
then its ability to survive is measured by the expectation of u(x,z) under d, where x is the
action chosen by the player and z the possible actions chosen by its opponents. This

description corresponds to a two-player symmetric strategic garnes.

The concept of an evolutionar equilibrium is designed to capture the notion of a steady
state in which no mutant can invade the population. For every possible action x E X the
evolutionar process occasionally transforms a small fraction of the population into
mutants who follow y. In an equilibrium any such mutant must obtain an expected payoff
lower than that of the equilibrium action, so that the mutant dies out. If a fraction E :; O of
the populationare mutants using the action y while all the other players use action x, then

4 For more comprehensive and techically sophisticated overviews, see Van Damme (1993), Mailath (1993),

Banerje and Weibull (1992), Hammersteinand Selten (1993) and Binmore and Samuelson (1993).
5 A symmetric game has the following properties;

1) the number of pure strategies for each player is the same.

Sl = si = K = r1,2,...kl ß = ix E R+ \¿Xj = 11

2) the players position does not matter. U, (x,y)= Ui (y, x)
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the average payoff to a non-mutant must exceed the average payoff to a mutant for all
values of E sufficiently small;

u(x,(l- E)X + ey):; u(y,(l- E)X + ey) 6

An equilibrium strategy satisfying this condition, is denoted an evolutionarily stable
strategy (ESS).

Evolutionar game theory highlights that even in situations presuming no conscious
choice or rationality, there maybe a case for equilbrium analysis. .Further~-byemploying
the concept of ESS it may be possible to choose arong multiple Nash equilibria. In a
symmetric game, only symmetric Nash equilibria are candidates for ESS? And among the
symmetric Nash equilibria, only the ones based on strategies satisfying the evolutionar
stability condition are ESS.

In non-symmetric garnes however, ESS is of less use with respect to refinement of Nash
equilibria. In gares with asymmetric player positions, only strict Nash equilibria can be
ESS (Selten; 1980)8. Garnes without strict Nash equilbrium fail to have ESS. With
regard to extensive form garnes, ESS is also of restricted value. An ESS has to reach all
information sets in order to exc1ude alternative best responses (Selten; 1983).

The dynamie approaeh.

Within the dynaric approach the dynamics eventually leading to the equilibrium are of
interest. The players, as they repeatedly interact, are assumed to try to maximise their
stage-game payoff. In doing so, their choice of strategy in the next stage game is based on
the belief that the distribution of their opponents play in the next game wil be the same as
the one revealed today. ff they tind it optimal, the players may choose to change strategy
before the next stage gare. In the general case, not all the players may adjust their
behaviour in every period. Following Mailath (1993), given that the players, when they
adjust, adjust towards the best reply of last periods distribution, this periods fraction of
the population (Pt) playing a given strategy x wil be given by the function;

Pi = b(pi_i)

where (p I-i) is the fraction of the population playing strategy x last period.

b(.) is referred to as the selection dynamics. By letting the selection dynamics satisfy the
Darwinian property (that is; b(P) -: p when the expected output of playing strategy x is

6 With probability (l-e) a player encounter a non-mutant, and with probabilitye he encounters a mutant.
7 A symmetr c Nash equilibrium is a Nash equilibrium where the strategy x is the best reply against itself.
8 It z is the best response to strategy x, and no other strategy is the best response to x, then the equilibrium (x,z) is

a strict Nash equilibrium.
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less than the expected output of an alternative strategy, and b(P) ~ p otherwise), and
adding the conditions that b(O) = O, b(1) = 1 and the convention that b(P) = p when p is
such that the players are indifferentbetweenwhichstrategy to play (noadjustment in this

case), we get a first order difference equation describing the evolution of the fraction of
the population playing strategy x9. The important feature of any selection dynamcs is
that it always adjust behaviour in the population towards the current best reply. The
population dynamcs wil always, if possible, increase the fraction playing the best reply
in the population.

The replicator dynamics (Taylor and Jonker; 1978) originating from evolutionar biology
is a paricular, continuous time, selection mechanism satisfying the criterion of always
adjusting population behaviour towards the current best reply. The dynamics for the
population shares Pi is given by;

Pi = (u(x¡ ,p) - u(p;p))p¡

where u(xi,p) is the expected payoff to any pure strategy i at a random match when the
population is in state p, andu(p,p) is the average payoff to an individual in the population

when the population is in state p10. The rate of change.! of the population share using
Pi

strategy i equals the difference between the strategy's current payoff, and the current
average payoff in the population.

Within a biological context, the individual players are not assumed to adjust their
behaviour. According to Weibull (1994), the replicators can be seen as the pure strategies
within the gare. These strategies can be copied without error from parent to child. In
such a setting the individuals in the interacting population are merely the hosts of the
replicators, and the replicator dynamics models how replicators compete for hosts in a
population of pairwise interacting individuals. The replicator(s) resulting in the greatest
biological fitness or reproductive success wil be the winners. The population share
programred to a pure best reply to the current population state wil have the highest
growth rate, and the sub-populations associated with better-than-average strategies wil
grow while strategies associated with worse-than-average strategies wil decline.

Compared to the static approach, dynamic evolutionar game theory shows not only that
there may be a case for equilbrium analysis in economic analysis, but also how such a
stable situation may be the outcome of a dynamc process. Within the replicator
dynamcs, Lyapunov stability deri ved without any rationality assumption, implies

9 Applied to the game gi ven in the introduction, with regards to strategy I played by group 1, b(p) o( p if p o( 113,

b(p) ~ p ifp ~ 113 and b(1I3) = 113.
10 replicator dynamics in a multi-population setting is:

P¡h ='(U(Xih ,p_¡) - u¡(p))p¡

The growth rate for subpopulation husing strategy i.
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aggregate behaviour which appear rational and coordinated in the sense of a symmetric
Nash equilbrium.

As in the static approach, the concept of ESS may be used to make refinements arong
the existing Nash equilibria. An ESS must be an asymptotically stable rest point of these
kind of dynamics. To be asymptotically stable is a stronger requirement than to be
Lyapunov stable 11. Not all rest points that are Lyapunov stable wil meet the requirements
of an asymptotically stable point. That is, not all Nash equilibria wil be ESS12.

However, the approach have serious limitations. The assumption that the players are
prograrmed to play certain strategies may describe the behaviour of some simple organic
organisms (like bacteria), but hardly the behaviour of human beings. By letting the
players be capable of adjusting their behaviour, the players get more human-like
behaviour. But this adjustment process is normally based on imitation of other players
strategies, either randomly as in pure imitation or deliberately as in payoff dependent
imitation. Explicit modellng of human learning processes are usually lacking, and
behaviour formation based on factors like role identification are not taken into
consideration.

Evolutionar game theory reviewed thus far only tests the stability of the system against
single mutants. Mutants are assumed to be relatively rare, only one mutant comes into
being at a time. The system wil thus have time to settle back into the original position
before the next mutant comes about. By assuming uniform random mixing of the
pairwise players, the probability of meeting some specific type does not depend on your
own type. In a situation where mutants would mainly interact with each other, they might
enter the system more easily.

As in the static approach the usefulness of ESS is restricted outside the realm of one
population symmetric garnes. For asymmetric garnes the same critique as for the static
approach applies, and within a multi-population setting there is no c1ear definition of ESS

(Weibull; 1994).

Neither the static nor the dynamc approach provides any solution to the problem of how
to choose among strict Nash equilibria. Within the replicator dynamics any strict Nash
equilibrium is an asymptotically stable stationar point of the dynamic (Weibull; 1993).
Hence, the evolutionar process does not help in selecting among such equilibria. The
theory cannot explain why beliefs are coordinated on a specific equilibrium. Having this
coordination of beliefs as the point of deparure, the equilibrium chosen wil depend on
this departure point. The resulting equilbrium wil be path and history dependent.

11 For a discussion of Lyapunov and asymptotically stable rest points see Weibull (1994).
12 Within the replicator dynamics, a Nash equilibrium is a stationary point of the dynamic. Each stable stationary

point is a Nash equilibrium, and an asymptotically stable fixed point is a pedect equilibrium (Bomze; 1986). It we
allow for mixed strategies to be inherited, then asymptotically stable fixed points of the replicator dynamics
correspond exactly to ESS (Bomze and Van Damme; 1982, Hines; 1980, Zeeman; 1981). It only pure strategi es
can be inherited, being an ESS is sufficient but not necessary for asymptotic stability (Taylor and Jonker; 1978).
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The stochastie approaeh.

Foster and Y oung (1990) and later Fudenberg and Haris (1992) and Kandori, Mailath
and Rob (1993) showed that it may be possible to discriminate between strict Nash
equilibria by adding perpetual randomness (or statistical noise) to the system. The models
differ in their assumptions regarding time (continuous/discrete), population size

(finite/infinite) and dynamic formulation. We wil base the presentation of the stochastic
approach on the model of Kandori, Mailath and Rob (1993) (from now on KMR) who
assume discrete time and finite population size.

The gare is played by the members of a finite population of size N. In each period the
members of the population are randomly matched into pairs. Given two strategies, the
state of the system may be characterized by Zt, the number of agents playing a specific
strategy in a given time period. The set of possible values of Zt is Z = t O, 1,....,N l.

The players are capable of changing their strategies, but the opportunity to adjust the
strategy choice is assumed to arive stochastically and independently across players and
time. When the opportunity is there, the players are assumed to choose a myopic best
response, and a law of motion towards myopic best respons es is established. This law of
motion, which satisfies the Darinian properties, is called the best response dynamic. In a
2x2 gare, the dynamic is given by the rule:

~z) = r ;

if Jl ¡ (z) ~ Jl i (z)

if Jl¡(z)=Jli(z)

if Jl¡(Z) 
o: Jli(z)

where Jl ¡ (z) is the expected payoff by playing strategy I when the system is in state Z, and

Jl i (z) the expected output by playing strategy Il.

In addition to the best response dynamics, noise is added to the system. The noise comes
about by assuming that a player who is expected to play strategy x by the best response
dynamc, with a small but positive probabilty E mutates and plays strategy y13. The
probabilty to mutate is assumed independent across players and over time.

13 In a setting with more than two strategy choices, the probability that a player expected to play strategy k mutates

to strategy j is mjE :; O, where e is the probability that the player wil mutate instead of playing according to the best
response dynamic and mj the probability that he will mutate to strategy j. I.jmj=l and e,m, j E (0,1)
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The evolution of the system is now described by a Markov chain 14 which is finite,
irreducible and aperiodic15. Given such a Markov chain all states have a strictly positive
probabilty ofbeing observed in the limit as time tends to infinity.

In a situation without noise, the strict Nash equilibria of the gare wil be absorbing states
of the best reply dynamics. When noise is added, all states may be realized. All these
states however, wil not have the sare likelihood of being observed. A Markov chain
which is aperiodic and irreducible has a unique stationar distribution. This stationar
distribution is stabile and ergodic. Stability implies that, staring at any initial distribution
over states, the unconditional distribution of states converges to the stationar distribution
asymptotically. Ergodicity on the other hand, means that the stationar distribution
asymptotically describes the time average behaviour of the process. Given the properties
of stability and ergodicity, when E is small, the probability of observing the system being
in one of the absorbing states is much bigger than the probability of observing it in any
other state. This being the case, the analysis of players coordinating their behaviour on a
paricular equilibrium, may be confined to the set of stationar states only.

The goal of the stochastic analysis is to characterize the limit (stationar) distribution,
given that it exists, when E goes to zero. States in the support of the limit distribution are
denoted long run equilbrium (KMR) or stochastically stable states (Foster and Y oung;
1990).

Long run equilibrium (denoted LRE) is a stochastic equilibrium concept. This implies
that the system, once settled down, wil not stay in the lon g run equilibrium for ever. The
mutants make the system move from one equilibrium to another. The average time spent
in the different equilibria however, wil differ, with the longest average time spent at the
long run equilbrium. The probabilty of observing the system in the long run equilibrium
wil, as a result, be greater than the probabilty of observing the system in' any other state.

The long run equilibrium.

For general 2x2 symmetric garnes with two strict symmetric Nash equilibria, KMR
showed that the limit distribution places probabilty öne on the state in which all players
play the strategy with the larger basin of attraction under the best reply dynamic. In other
words, the equilbrium state with the biggest basin of attraction is the long run
equilibrium.

To exemplify this result, consider the following 2x2 symmetric game played by 10
players;

14 Within a Markov chain today's distribution of states depends only on yesterdays distribution.
15 A Markov chain is irreducible if Prob( z(T)=z' I z(O)=z) )o O for all z and z' for som e T E N (N is the set of natural
numbers). That is; any pair of states within the system are mutually reachable. It is aperiodie if the greatest common
divisor of tT E N I Prob( z(T)=z'l z(O)=z ))0 O L is L for all z and z'. There is no cycle in the dynamic.
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2I Il
1

I

Il
2,2

0,0

0,0
1,1

The possible states Zt of this system (the number of agents playing strategy I) is 0,1,..,.10,
and the steady states are O or 10. ff i' (the "mixed" strategy equilibrium) had been an

integer, i' would been the third steady state of the dynamic.

To find the basin of attraction belonging to the two equilbria, the critical level z* is
computed. z* is the leve! for which the following is true (z* needs not be an integer):

sign (1l¡(Z) - 1l¡¡(z)) = sign (z - z*)

For general symmetric gares with payoff matrix:

2I Il
1

I

Il
a,a

c,b

b,c

d,d

N(d-b)+a -d
KMR (1993) show ed that z* = . Essentially, z* corresponds to thea-c+d-b
mixed strategy equilibrium which put probability J. = d - b on strategy i. z* isa-c+d-b
not exactly equal to ¡. however, since players with strategies I and Il face slightly
different strategy distributions due to the finiteness of the population. But as the
population size becomes larger, the difference between z* and ¡. vanishes.

The two states O and 10 have basins of attraction under b given by f z c: z* L and f z :; z* L
respectively. The critical value z* divides the state space between 3 and 4. The basin of
attraction for equilbrium 10 consist of the states 4,..,10, and the basin of attraction for
equilibrium O of the states 0,..,3. Given that the systemis in the equilibrium O (all play
strategy Il), at least 4 mutations are needed to reach the basin of attraction of equilibrium
10. When staring in equilibrium 10 on the other hand, the minimum of 7 mutations are
required to reach the other equilbrium16. It takes more mutations to upset equlibrium 10
than to upset equilibrium O, resulting in 10 being the lon g run equilbrium.

i 6 In the general case, assuming z * = Jl, to escape the basin of attraetion of equilibrium (d,d) and reach the basin

of attraction of equilibrium (a,a), a number of dN/(a+d) mutations are needed. To go from equilibrium (a,a) to (d,d)
on the other hand, N-(dN/(a+d))=aN/(a+d) mutations are required.
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Given that the system is at one of the absorbing states, for the system to reach the basin of
attraction of the other absorbing state, it is crucial that enough mutations occur in one
period. Even though thereare othersequences ofeventsthat will take the system from

one absorbing state into the basin of attraction of the other, the lowest order probabilty
event is the one in which the transition occurs in one period. To see this, assurne that the
mutations instead are spread over two periods. After the first mutation period and before
the second, the system is stil in the basin of the original equilbrium. This being the case,
at least one of the mutant players wil switch back to the original strategy by the best
response dynamic, and ths effect must be overcome by one more mutation.

Theorem 3 in KMR (1993;44) states that: given that the stage game is a coordination
game and z*:f i', for any population size N;? 2 and any adjustment process satisfying

the Darwinian properties, the limit distribution puts probability 1 on N if z* -: i' and on
O if z* :; i' .

In our exarple z* = LO~~~~~-i = 131 = 3l. Since N = 10 and z* -: i', the basin of

attraction supporting equilbrium N is bigger than the basin of attraction supporting

equilbrium O. All players choosing strateg y I is the long run equilbrium in this game.

Evolutionary game theory and the battle of the sexes

In this section we wil return to the questions raised in the introduction regarding the

abilty of evolutionar gare theory to predict which, if any, Nash equilibrium a BoS

gare, e.g. a game of men and women household builders, wil end up in.

The gare "the battle of the sexes" (BoS) put forward in the introduction, is an
asymmetric, normal form game. The gare has two symmetric strict Nash equilbria in
pure strategies, (1,1) and (I1,m, and a non-symmetric equilbrium in mixed strategies
(X, X), (X, X) . In this asymmetric game, the two strict Nash equilbria are candidates for
ESS. By the use of a selection dynamics satisfying the Darwinian property, the law of
motion in the gare is given by figure 1. The mixed strategy equilibrium turns out to be
unstable, while the two strict Nash equilbria are asymptotically stable states of the
system. In equilbrium A =(NxN) all players in both populations chooses to play strategy i.
In A ' =(OxO) on the other hand, all of them chooses to play strategy Il.

9



X21

A
1

A'
1

XlI

Figure 1.

With respect to the game in question, the dynamic evolutionary approach predicts the
society to end up in either A or A'. But which one, the theory cannot tell. To be able to
determne the most likely candidate, one has to move beyond the dynamcs of the model
and into the history of the game.

In 2x2 symmetric, . singe population garnes, the stochastic evolutionary approach
formulated by KMR is capable of discriminating between different stationary states on
the basis of the number of states in support of each state 17. In the following we wil make
use of their results in our inquiry to tind the lon g run equilbrium for the BoS game
presented.

The BoS gare may be said to differ from the simple coordination game of the previous
section in two respects. First by being asymmetric rather than symmetric, and related to
this, by bein g played by players from two, rather than one, population. To capture these
differences, the technique employed to tind the basins of attraction corresponding to the
different stationar states in the 2x2 symmetric, one population game, must be modified
to capture the characteristics of the game in question.

The modifications needed wil be presented in two steps. Westar with the ones required
to go from a one population to a two population 2x2 symmetric game. Thereafter the

changes makng the technique suitable for asymmetric 2x2 garnes wil be put forward.

i 7 The cost of transition is measured by the number of mutations required to go from one equilibrium to the basin

of attraction of another in one leap. As N increases, the number of mutations needed also increases, making a
transition less probable. This feature makes the analysis most suitable for relatively small populations. By intro-
dueing the feature of local interaction among the players, the analysis is made independent of N (see.Ellison ; 1993)
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Two populations, 2x2 symmetric game.

Imagine a 2x2symmetric game where the players playing against eachothercome from
two different populations, each containing N players. The state space for this gare

becomes Z = (0,1,.. . , N)x( 0,1,. .., N). The state space is a grid of points over a two

dimensional square. The possible states at each time is now described by a pair of
numbers; Z = (ZI¡,Zii)' The state indicates the number of players in each population

playing strategy i (at time t).

For each population separately, the Darinian adjustment dynamics specified for the one
population setting, is assumed. Furthermore, since a player from population 1 is sure to
meet a player from population 2 within each stage gare, players belonging to population

1 are only interested in the distribution of strategies played by players of population 2,
and vice versa. This being the case, a critical leve! z¡*, Z2* for each population can be
computed. The state space is now paritioned into four subregions. In subregions B and B'
the dynamics are unambiguous. They point towards one of the game's two Nash

equilibria. In subregions C and D on the other hand, the Darinian . dynamics point in
conflcting directions. The state space and the critical levels for a symmetric, two
population 2x2 gare is given in figure 2. The arrows indicate the Darinian dynamics.

Z21

N
A

r- L
c B

ZZ*

;- j D ~
A' Zii

Z¡* N

Figure 2.

To find the lon g run equilbrium, the cost of transition between the two equilibria A and
A' must be computed. The co st of transition between the two equilibria is equal to the
minimial number of mutations needed to move from one equilibrium into the basin of
attraction of the other. Under the assumption that the adjustment dynamics within the two

11



populations of players are identical, (implying that the speed of adjustment of population
1 players are equal to speed of adjustment of population 2 players), the basin of attraction
for A and A' are given by are as B and B' (the areas with unambiguous dynamics)

respectively.

The cost of transition from A' to A, C(A',A) = Zi*18, where i = 1,219. To see this, suppose
that all players initial ly choose strategy Il (equilibrium A J. ff suffcient number of
population 1 players mutate towards strategy I, strategy I becomes the best reply for
population 2 players the next period. By the assumtion of stochastic adjustment, it
happens with positive probabilty that, in the next period, none of the players from
population 1 adjust but all players from population 2 switch to strategy i. In this way,
equilbrium A, where I is played can be achieved by mutations in one of the populations
only. By the same line ofreasoning, the cost oftransition from A toA', C(A,A') = N-z¡*. In

our example, z¡* is smaller than N-z¡*, and A becomes the long run equilibrium.

To ilustrate the effect of variable adjustment speed, consider the case where population 1
players adjust intinitely faster than population 2 players in region D, and population 2
players adjust infinitely faster than population i players in region C. In this case the basin
of attraction for equilibrium A' consists of region B',C and D, while the basin of attraction
for equilibrium A consist of B alone. In this situation, to escape the A equilibrium, N-z¡*
mutations are needed. To escape the A' equilibrium, region B must be reached. This
requires 2(z¡*) mutations (z¡* mutations in each population). To find the long run

equilibrium, N- z¡* must be compared to 2(z¡*). In theexarple presented, N- z¡* turns out
to be smaller than 2( z¡ *), resulting in A i being the long run equilibrium.

Two populations, 2x2 asymmetric game.

In the asymmetric BoS gare, Zl * and Z2 * can be computed in the same way as in the
symmetri c two population 2x2 game. This time however, Zl* is not identical to Z2*. The
critical leveIs, and the subregions of the state space exhibiting unambigious and
conflcting dynamcs, is shown in figure 3. As before, given identical adjustment speed
within the two populations, the areas B and B' exhibiting unambigous adjustment

dynamics are the basins of attraction supporting equilbrium A and A'.

18 This is an approximation. Since we are dealing with finite populations, the cost of transition is equal to the

integer just exeeding zi*' The same applies to N-zi*'
19 In a symmetric two population game, zl * equa1s Z2*'
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ZZI

N
A

r iL
c B

ZZ*

-i B' I:J
A'

.

Zii
Z¡* N

Figure 3.

By the same line of reasoning as in the symmetric, two popu1ation case, the cost of
transition between the two equilibria are equal to;

C(A' ,A) = min(zi *,zi *) and C(A' ,A) = min(N - Zi *,N - Zi *).

ff min(zi*,zi *)-:min(N-Zi*,N-zi *), A wil be LRE and if min(zi*,zi *):;
min( N - Zi * , N - zi *) A i is the long run equilibrium. In the example given,

min( Zi * , zi *) turn out to be equal to min( N - Zi *, N - zi *). The cost of transition from

A to A' is equal to the cost of transition from A i to A. This being the case, both the

equilbria are LRE. The system wil as aresult cyc1e between them, spending half the

time in each.

For general 2x2 symmetric gares, KMR showed that the limit distribution put probability
one on the equilbrium with the biggest basin of attraction. We state that this result is
applicable also for 2x2 asymmetric garnes. For the BoS game in question, the basin of
attraction corresponding to equilibrium A i is of size (ZI *)( Zi *), and the bas in supporting

A is equal to (N - Zi *)( N - zi *). According to the size criteria, A is LRE if

(ZI *)(zi *) -: (N - Zi *)(N - zi *) and A' is LRE if the converse holds.

In contirmng this statement we wil only consider the case of
(ZI *)(zi *) -: (N - Zi *)(N - zi *) since the case:; is just a re-Iabellng of the -: situation.
We wil show that when (ZI *)(zi *) -: (N - Zi *)(N - zi *), the co st of transition in going

from A' to A is smaller than the co st of going from A to A'. Recall that the costs of
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transition are given by; C(A',A)=min(ZI*,zi *) and C(A,A') 
= min(N-zi*,N-zi *).

For a transition to occur it is suffcient that enough mutations occur within one of the
populations.

Proposition:

min(zpZ_I).( min(N - Zi )(N - Z_I) t: Zi + Z_I .( N t: ZIZ_I.( (N - Zi )(N - z_i)

Proor-

Observe that: Z¡ = min(zi 'Z_I) t: N - Z-i = min (N - Zi, N - Z_I)

Hence: Z¡ =min(zpz_i) .( N-z_i =min(N-ZpN-z_i)

t: Zi + Z_I .( N t: Pi + P-i .( 1
( where p i = ~ )

t: PiP-i + Pi + P-i - PiP-i .( 1 t: PiP-i.( 1- Pi - P_i + PiP-i

t: PIP_i.((l-Pi)(l-p_l) t: zlz_I.((N-zi)(N-z_1)

The result shows that (ZI *)(Zi *).( (N - Zi *)(N - zi *) is equivalent to
min( Zi * , Zi *) .( min( N - Zi *, N - zi *) . The equilibrium supported by the bigger basin of

attraction is LRE. The result also shows that (ZI *)(zi *).( (N - Zi *)(N - zi *) is
equivalent to z, * +zi * .( N. The criteria is a generalisation of the result obtained by
KMR for 2x2 symmetri c garnes. In symmetric garnes, * and the criteria becomes

z* .( N/2.

The BoS gare given in the introduction is ilustrated in figure 4. For N = 10, Zi * +zi * =

10 = N. The basin of attraction corresponding to each equilibrium is of equal size. Both
the equilbria is LRE. The result is, as expected, equal to the result obtained by comparing

C(A',A) and C(A,A').

The res ult presented shows that when Zi * +zi * .( N, equilbrium A characterised by all the

players choosing strategy I wil be long run equilbrium. Generally, however, the sign of
Zi * +zi * -N is a function of the risk characteristics of the BoS stage game. The risk
characteristics is the risk connected with strategy I relative to strategy Il. ff c¡ is large relative
to bi, strategy I is riskier than strategy Il. Harsanyi and Selten (1988) proposed a notion of risk
dominance to capture the risk characteristics of a 2x2 game; Their notion of risk dominates
states that: Equilibrium A (all players play strategy l) risk dominates equilibrium A' (all
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players play strategy Il) if (ai - c1 )( a2 - c2) :; (di - bi )( d2 - b2) and equilibrium A' risk

dominatesA if(ai -ci)(a2 -c2).;(dl -bl)(d2 -b2).

To obtain the risk characteristics of the BoS stage game, consider the game written in
general form;

2
I IT

1
I ai,az bi,cz

Il ci,bz di,d2

N(d. -b.)+a. -d.
By makng use of the fact that Zj * = L L L L , where i = 1,2, it can be shown

aj -c¡ +dj -bj
that Zl * +Z2 * :: N if and only if:

(l-l-)(a -c )(a -c )-l-(a -b )(a -b ):;(l-l-)(d -b )(d -b )-l-(d -c )(d -c )N i i 22 NI 122- N i 122 NI 122
As N increases, this condition approaches the Harsanyi & Selten notion of risk
dominance.

For N big enough, that is for

(ai -bl)(a2 -b2)-(dl -ci)(d2 -c2)N;:l+
(ai -ci)(a2 -c2)-(dl -bl)(d2 -b2)

the long run equilibrium chosen wil be the risk dominant equilbrium.

For gares with player-specific risks, that is for garnes where the players face identical risk
regardless of the strategy chosen, but where players from the different populations face
different risk, bj = c¡, (i = 1,2), the condition fot Zi * +Z2 * :: N reduces to;

(ai -ci)(a2 -c2)::(d, -c,)(d2 -c2)

Sinc.e cj is the lowest output attainable, (kj - c¡ ), where k = a, d and i = 1,2, is the surplus

obtained given an equilbrium outcome. In a game with player-specific risk the long run
equilbrium wil be the equilibrium with the largest surplus product. Note that for such garnes
the population size N do not influence the equilbrium chosen.
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Should the risk be identical for the two groups of players, bj = cj = c, differences in
equilbrium outputs determnes the long run equilibrium. This is most easily seen by choosing
c= O. The condition thenreduces to aiai:; didi. The equilibrium with thelargest product of

outputs is the long run equilibrium.

Concluding Remarks

By extending the stochastic evolutionar model of KMR to cover the asymmetric 2x2
BoS game, the lon g run equilibrium of the game is selected. For population sizes
sufficiently large the long run equilbrium is the risk dominant equilibrium. With respect
to the specific game presented in the introduction, both the strict Nash equilbria turned
out to be LRE, indicating that the system wil cycle between them.

Within the model formulation presented, the size of the basin of attraction is the
important feature of the selection dynamc. This feature however, is peculiar to discrete
models with independent mutations having equal probabilities to occur. The result may
not carr over to other model formulations.

Interesting aspects not captured by the model presented are:
given differences in the mutation rates in different populations, which

relationship, if any, can be found between a fast/slow mutation rate and the
characteristics of the long run equilibrium chosen.
is the mutation rate exogenously given? What would happen if the tendency to
mutate depends on the number of mutant players within the players own
population group (the number of role models).
wil the sizes of the interacting populations influence the equilibria chosen? In a

setting where the individuals are randomly drawn to interact pair-wise, unequal
population sizes must imply that not all individuals in the largest population gets
to play in each stage gare. Wil the distribution of strategies within the subgroup

playing be representative for the group as a whole, or is there some selection

mechanism makng the distribution skewed toward a/some specific strategies?
A game where the players only leam about the distribution of strategies played in
the opposite population, can model a situation where the game is assumed to take
place only once in each generation. To catch the dynarics of a repeated game
played by the same two players in every period on the other hand, some learning
process regarding the opponents strategy choices must be included.
wil the assumption of players randomly mixed in pairs catch the team-formation
procedure in real life situations?

The list reveals many areas for research where the method of evolutionar game theory
can be applied and developed. Being able to predict not only the equilibrium states
possible, but also the one most probably chosen in different gare theoretic settings, is an
existing challenge increasing the usefulness of game theoretic analysis.
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